
Software Engineering

 3 - 1

SOFTWARE
REQUIREMENTS

l Fundamentals l Object-oriented Analysis

- Overview - Basic Concepts

- Analysis Principles - OO Analysis Modeling

l Structured Analysis - OO Data Modeling

- Notation l Formal Techniques

- Extensions for Real Time - Background

- Mechanics - The Z Spec Language

- Requirements Dictionary l Automated Techniques

Software Engineering

 3 - 2

TOPICS

Fundamentals

Structured and Object-Oriented Analysis

Formal and Automated Techniques

Software Engineering

 3 - 3

Software Development
 Lifecycle

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Software Engineering

 3 - 4

Requirements Analysis - Overview
Tasks

From Systems
specification
and project plan To preliminary and

detailed design

Understand
problem

Evaluate
problem and
identify solutions

Model the
solution

Define
detailed
specification

Review
results

Software Engineering

 3 - 5

l Define the functional domain - what functions are to be
performed?

l Define the information domain - what is the flow of
information in the system, what is the structure of that
information, and what is the content of that information?

l Partition the problem - what is the hierarchy of the
problem?

l Develop the logical view of the requirements - detail the
functions and data

l Develop the physical view of the requirements - detail the
real-world forms of the functions and data

Basic Activities of
Software Requirements Analysis

Software Engineering

 3 - 6

Common Problems Encountered
During Requirements Analysis

l general communications problems, including not
understanding the problem, misinterpreting
information, and missing information

l acquiring pertinent information

l handling problem complexity

l accommodating changes that will occur during and
after analysis

Software Engineering

 3 - 7

Beginning the Process

Hold a meeting!

The Facilitated

 Application

 Specification

 Technique (FAST)

Software Engineering

 3 - 8

Example: The SafeHome System

A microprocessor-based home security system that
protects against a number of undesireable events
such as illegal entry, fire, flood, etc.

SafeHome will use sensors to detect each situation,
can be programmed by the homeowner.

SafeHome will automatically telephone a monitoring
agency when a situation is detected.

Software Engineering

 3 - 9

Problem Understanding

Step 1. Identify objects, operations, constraints, and

performance criteria:

 Objects

Smoke detectors

Window/door sensors

Motion detectors

Alarm

Control panel

Telephone numbers

 Operations

Set/reset alarm

Monitor sensors

Dial phone

Program control panel

 Constraints

Cost less than $200

Easy to use

Direct dial to telephone

Performance Criteria

Display within 1 s of event

Prioritize event processing

Delay at least 1 min before
dialing phone

Software Engineering

 3 - 10

Problem Understanding, Continued

Step 2. Develop "mini"-specification for each entry on
each list

Object: Control Panel

Mounted on wall

Size 9x5 inches

Contains 12 key-pad and special keys

Diagram of panel

All user interaction through control panel

Used to enable and disable system

Software to provide interaction guidance, echo
responses, etc.

Connected to all sensors

Software Engineering

 3 - 11

Problem Understanding, Continued

Step 3. After much debate and list modifications,
create list of validation criteria

Enter 200 random events and observe alarm responses

Ensure display resets on power up

When phone numbers are entered with 555- prefix, ensure
telephone is not dialed

Software Engineering

 3 - 12

Problem Definition

Step 4. Write complete draft specification using
 results of steps 1-3

Requirements Spec

Software Engineering

 3 - 13

Concepts of Analysis

Information Domain:
1. Information flow

2. Information content

3. Information structure

Modeling: Pictorial representation of problem solution

Aids analyst in understanding problem

Focal point of review

Foundation for design

Partitioning: Break big problems into little ones

Software Engineering

 3 - 14

Software Views

 View

Informational

Functional

Behavioral

 Focus

Data

Functions

Execution process

Software Engineering

 3 - 15

Software Prototyping

Assume a request for proposal (RFP) or

system spec defines the problem.

Determine if
prototyping is
the preferred
approach

Develop
abbreviated
requirements
specification

Develop
abbreviated
design
specification

Code, test,
and refine
prototype
software

Customer tries
out prototype,
suggest
modifications

RFP

Production

system

Software Engineering

 3 - 16

Specification Principles

l Separate functionality from implementation - describe
what is desired, not how

l Understand the system of which the software is a part
and the environment in which the system resides

l Develop a cognitive model rather than a design or
implementation model, and keep the perspective of the
user

l View the specification as a model, see if it is adequate to
determine if a proposed implementation is satisfactory,
and tolerate imcompleteness

l Localize and loosely couple the specification

Software Engineering

 3 - 17

Software Requirements Analysis (SRA)

Common Characteristics of the
Methodologies

l They perform information domain analysis

l They have a means to represent functions

l They can define interfaces

l They support partitioning of the problem

l They support abstraction

l They can represent both the physical and logical

views of the problem

Software Engineering

 3 - 18

Data Flow Analysis Methods

l Data Flow Diagrams

l Data Dictionary

Software Engineering

 3 - 19

Data Flow Diagrams

Data Store Data Store

Data Store

Function Function

Data Flow

Data Flow

Data Flow

Data FlowThese are the symbols
commonly used in
Data Flow Diagrams (DFD's).

Software Engineering

 3 - 20

DFD Example

 Simple Printed Circuit Board Layout Program

Given two data files: a list of nets and initial board description,

1. Determine and display the best route for interconnecting each net
on the board.

2. Permit user to:

a. add new nets to list

b. delete nets from list

c. select any or all nets to be routed

d. request status info about nets or routed board

e. define style of routing (steiner points, chain, or tree)

f. save final routed board in a file

Software Engineering

 3 - 21

DFD Example, Continued

Netlist Initial Board
Description

User
cmds

Final Board
Description

Display

Board,
messages

PCB
Layout
Program

Level 0
(Context Model)

board

boardnet

Console

Software Engineering

 3 - 22

DFD Example, Continued

Parse
input
cmd

Route
net

Display
routed
net

Display
requested
info

Process
new
net

Final board
configuration

Netlist

console

Initial board
configuration

user
cmds

info
request

route
stylenet

points

net

netnet

routed
net

board

board

display

DFD Level 1

1.0

2.0

3.0

4.0

5.0

Software Engineering

 3 - 23

DFD Example, Continued

Update
board

Final board
configuration

Initial board
configuration

route
style

net

routed
net

board board

board,
net

route
net using
chaining

route
net using
steiner
points

setup
net for
routing

route net
without
steiner
points

Display

board,
net

board,
net

board,
routed net

board,
routed net

board,
routed net

3.0

1.0

4.1

4.2

4.3

4.4

4.5

DFD Level 2

Software Engineering

 3 - 24

Data Dictionary and Its Content

l Each class of objects in the system and its
attributes

l Each singular object (i.e., if placed into a class,
the class would have only one instance) and its
attributes

l Key constants and their attributes

l Subprogram parameters and their attributes

Software Engineering

 3 - 25

Data Dictionary Entry (Example)

Name: net
Alias: net_graph, point_list
Used: process in out file buffer external
 4.1 3.0 4.2,4.3,4.4
 4.2 4.1
 4.3 4.1
 4.4 4.1
Description: List of no more than 20 points (x,y) where
x and y are vertical and horizontal grid locations on the
board. x and y are 16-bit unsigned integer values each
greater than 0 and less than the max size of the board.
Supplementary Information: -- none --

Software Engineering

 3 - 26

Functional Analysis Methods

l Function Diagrams

l State Transition Diagrams (STD's)

l Entity-Relationship Diagrams (ERD's)

Software Engineering

 3 - 27

Function Diagrams
IF-THEN-ELSE

WHILE-DO
REPEAT-UNTIL

CASEThese are the
symbol combinations
commonly used in
Function Diagrams.

Software Engineering

 3 - 28

Function Diagrams - Example

Open
File

Get
Line

Done? Close
File

Put
Line

No

Yes

Software Engineering

 3 - 29

Behavioral Modeling

l Helpful for control-dominated systems

l State Transition Diagrams

- Like Finite State machines

- Depicts states and events causing change of state

- Depicts actions to be taken when events received

Software Engineering

 3 - 30

State Transition Diagrams

State 1

State 2

Event/
Resulting Action

These are the symbols
commonly used in
State Transition Diagrams (STD's).

Software Engineering

 3 - 31

State Transition Diagrams - Example

Initialize System and
Open File

Read Line from File

Format Line

Write Line to ConsoleClose File (if open)
and Exit

Done

Open Failed/
File Not
Found Message
Is Displayed

End of File
New Line Read

Done

Write
Successful

Write Failed/
Error Message
Displayed

Software Engineering

 3 - 32

SRA for Real Time Systems

l Real Time Systems:

1. Time dependent

2. Control oriented

3. Driven by events more than data

4. Some activities execute asynchronously

l Use control flow models to specify such systems

l Approach: Extend DFD model

Software Engineering

 3 - 33

Ward-Mellor Extensions

Time Continuous Data Flows

Monitor
and adjust
temperature
level

Monitored
Temperature

Temperature
set point

Corrected
value

Continuous input

Discrete input

Software Engineering

 3 - 34

Data and Control Flow

Parts status buffer

Robot command file

Status of
each fixture

Operator
commands

Robot
movement
record

Movement
alarm

Position
commands

bit
commands

Start/stop
commands

Process
activateOperator

settings

Monitor
fixture and
operator
interface

Robot
initiation
control

Process
robot
commands

control item control

process

Example: Manufacturing cell

Ward-Mellor Extensions, Continued

Software Engineering

 3 - 35

Combined Data Flowand Control Flow

DFDs

PSPECs

CFDs

CSPECs

Data Input

Control Output

Data Output

Control Input

Process
activators

Data
conditions

Process Model

Control Model

Hatley-Pirbhai Extensions

Software Engineering

 3 - 36

Example: Office Photocopier Software

Operator commands
and data

Displays

Problem
type

Copy
status

Problem
code

Reload
status

Copy
info

Reload
requirements

Read
operator
input

Manage
copying

Produce
user
displays

Reload
paper

Perform
problem
diagnosis

DFD

Hatley-Pirbhai Extensions, Continued

Software Engineering

 3 - 37

Example: Office Photocopier SoftwareCFD

Read
operator
input

Manage
copying

Produce
user
displays

Reload
paper

Perform
problem
diagnosis

Repro fault

Full

Start/
stop

Paper feed
status (jammed,
empty, etc.) Alarm

Hatley-Pirbhai Extensions, Continued

Software Engineering

 3 - 38

Example: Office Photocopier Software

Read Operator Input:

if op_in = paper11

then set form=11 inches;

if op_in = paper14

then set form=14 inches;

if op-in = color

then set style=colortype;

 .

 .

 .

Alarm Condition:

if start && (feed_status = NOT
ok) then set alarm (status);

 .

 .

 .

PSPEC

CSPEC

Hatley-Pirbhai Extensions, Continued

Software Engineering

 3 - 39

An Alternative: SADT
Structured Analysis and Design Technique
 (also known as IDEF 0)

l A graphical notation

l Actigrams and datagrams that omminicate relations of information
(data and control) and function within software

l Includes project control guidelines for applying methodology

entityInput Output

Control

Mechanism

Trademark of Softech, Inc.
1

1

Software Engineering

 3 - 40

Actigrams and Datagrams

Report
status

Records
Report

Records

Report request

Records

Modify status

Generate
records

Report status

Maintain and update

Actigram

Datagram

SADT, Continued

Software Engineering

 3 - 41

Example: Spelling Checker

Read
input

Search
for errors

Report
errors

Dictionary

Words
to check

Text to
check

Request for more
words to check

Report

SADT, Continued

Software Engineering

 3 - 42

OOA: Object Oriented Analysis
l Basic concepts

l How to identify objects

- Identifying objects

- Specifying attributes

- Defining Operations

- Communication between objects

l OOA modeling

- Classification and assembly structures

- Defining subjects

- Instance connections and message paths

- Prototyping

l Data Modeling

- Data objects, attributes and relationships

- E-R diagrams

Software Engineering

 3 - 43

Object Oriented Development Process

Given a clear and complete statement of problem definition:

Identify
Objects

Identify
Structures

Define
Subjects

Define Attributes
and instance
connections

Define Operations
and Message
Connections

Coad, P., and E. Yourdon, Object Oriented Analysis,

Prentice-Hall, 1990.

Basic Concepts

Software Engineering

 3 - 44

Basic Concepts, Continued

Data

Procedures
 - Private
 - Public

Object
Booch Diagram
of an object

Objects are specific instances of classes (i.e., templates)

Public procedures

Private procedure

Software Engineering

 3 - 45

Objects are specific instances of classes (i.e., templates)

Data
Declaration
(i.e., attributes)

Procedure
Declarations
 - Private
 - Public

Class

Object

Object

Objects inherit all
attributes and
operations of the
class

Basic Concepts, Continued

Software Engineering

 3 - 46

Class/object Example

Cost
Dimensions
Weight
Location

Buy
Sell
Weigh
Move

Cost
Dimensions
Weight
Location

Cost
Dimensions
Weight
Location

Buy

Sell

Weigh

Move

Buy

Sell

Weigh

Move

Furniture Class

Chair Object

Table Object

Basic Concepts, Continued

Software Engineering

 3 - 47

l Encapsulation - All class information is

contained under one name which can be reused

as one specification or program component.

l Inheritance - Objects and derived classes inherit

all attributes and operations from their class

descriptions.

l Polymorphism - Derived classes can add,

delete, and redefine inherited attributes and

operations.

l Messages - Procedures in separate objects

communicate (i.e., call and return) via messages.

Basic Concepts, Continued

Software Engineering

 3 - 48

How to Identify Objects
Identifying Objects

Object Name

Attributes

Operations

Potential Objects - examples

l External entities - devices, people

l Things - reports, displays, signals

l Occurances or events - interrupts

l Roles - manager, engineer

l Organizational units - division, group

l Places - shop floor, tail section

l Structures - sensors, computers

Software Engineering

 3 - 49

Find the potential objects in the following narrative:

Safehome software enables the homeowner to configure the security
system when it is installed, monitors all sensors connected to the
security system, and interacts with the homeowner through a key pad
and function keys contained in the SafeHome control panel.

During installation, the SafeHome control panel is used to "program" and
configure the system. Each sensor is assigned a number and type, a
master password is programmed for arming and disarming the system,
and telephone number(s) is (are) input for dialing when a sensor event
occurs.

When a sensor event is sensed by the software, it rings an audible alarm
attached to the system. After a delay time that is specified by the
homeowner during sysem configuration activities, the software dials a
telephone number of a monitoring service, provides information about
the location, and reports the nature of the event that has been
detected. The number will be redialed every 20 secondss until
telphone connection is abtained.

Identifying Objects - Example

Software Engineering

 3 - 50

Selection Criteria for classes and objects:

1. Retained information - information that must be remembered
for system to function.

2. Needed services - operation are needed to change values of
attributes.

3. Multiple attributes - focus on "major" information. Single or
minor attributes can be collected together in single object.

4. Common attributes - attributes which apply to all occurances of
the object.

5. Common operations - operations which apply to all occurances
of the object.

6. Essential requirements - external entities that produce or
consume information that is essential to system operation.

Identifying Objects - Example

Software Engineering

 3 - 51

How to Identify Objects
Specifying Attributes

1. Scan the problem definition and select those things that belong to
an object.

2. For each object, ask "what data items (composite or elementary)
fully define this object in the context of the problem?

3. For example, using the SafeHome system object:

sensor_info = sensor_type + sensor_number +
alarm_threshold

alarm_response = delay_time + telephone_number +
alarm_type

activate/deactivate_info = master_password +
tries_allowed + temp_password

id_info = system_ID + verification_phone_no. +
system_status

Software Engineering

 3 - 52

How to Identify Objects
Defining Operations

l Manipulation - add, delete, reformat, select, initialize

l Computation - equations, transformations

l Monitoring - occurance of a controlling event

Operations are of three types:

1. Scan the problem definition and grammatically parse it for verbs to
be candidate operations that belong to each object.

2. Try defining the candidate operations for objects defining the
SafeHome system (use description in prior slide)

To derive a set of operations for each object:

Software Engineering

 3 - 53

How to Identify Objects
Interobject Communication

During requirements definition, eplicite messages need not be known.
Only general object interaction should be defined.

Note: Messages
initiated by
procedures in
objects, and
are sent to
precedures in
objects.

msg: (dest, op, args)

Software Engineering

 3 - 54

Given a clear and complete statement of problem definition:

Identify
Objects

Identify
Structures

Define
Subjects

Define Attributes
and instance
connections

Define Operations
and Message
Connections

Coad, P., and E. Yourdon, Object Oriented Analysis,

Prentice-Hall, 1990.

Object-Oriented Development Process

Software Engineering

 3 - 55

OOA Modeling
Classification and Assembly Structures

Once objects have been defined, structure groups of them into

classification trees or assembly trees:

table

Coffee CardDining

table

LegsTop

Classification Structure Assembly Structure

Software Engineering

 3 - 56

Given a clear and complete statement of problem definition:

Identify
Objects

Identify
Structures

Define
Subjects

Define Attributes
and instance
connections

Define Operations
and Message
Connections

Coad, P., and E. Yourdon, Object Oriented Analysis,

Prentice-Hall, 1990.

Object-Oriented Development Process

Software Engineering

 3 - 57

OOA Modeling
Defining Subjects

For large OOA models with hundreds of objects and dozens of structures,
organize the structures in to subjects which can be referenced by a single
name or ID.

Control panel

System Sensor event

Audible alarm Sensor

Arrows between subjects

are commjnication paths.

subject reference

Software Engineering

 3 - 58

Given a clear and complete statement of problem definition:

Identify
Objects

Identify
Structures

Define
Subjects

Define Attributes
and instance
connections

Define Operations
and Message
Connections

Coad, P., and E. Yourdon, Object Oriented Analysis,

Prentice-Hall, 1990.

Object-Oriented Development Process

Software Engineering

 3 - 59

OOA Modeling
Instance Connections and Message Paths

Analyist should define specific relationships
between objects:

zero

one

many

Thus:

zero or one

exactly one

one or more

zero or more

Define:

Sensor

Sensor event

Control panel

Software Engineering

 3 - 60

OOA Modeling
Prototyping

OOA can lead to very effective prototyping
techniques

- Reuse defined, coded, and tested objects

- Establish library of quality objects and save
analysis info as well as code and tested
objects

- Use existing object specifications in the
development of new products.

Software Engineering

 3 - 61

Data Modeling
Data Objects, Attributes and Relationships

OOA concepts arose out of data-intensive analysis techniques (called
data modeling or information maodeling) that have been in existence
for years (especially in database systems).

Recent uses of data modeling are seen in defining data formats for
interchanging data between CAD systems, computers, and manufacturing
organizations.

Some terms:

schema - data model used in databases

protocol - data model used in digital communications

framework - data models used to interchange data between CAD
 systems and manufacturing organizations

Software Engineering

 3 - 62

Objects have Attributes

Naming attributes

Descriptive attributes

Referential attributes

Objects own Objects

Data Objects, Attributes, and
Relationships

Software Engineering

 3 - 63

Entity 1

Entity 2

Relationship

These are the symbols
commonly used in an
Entity-Relationship
Diagram (ERD).

Entity-Relationship Diagrams

Data Modeling

Software Engineering

 3 - 64

Program

Console File

Reads Lines From

Creates

Writes Lines To

Entity-Relationship Diagrams - Example

Data Modeling, Continued

Software Engineering

 3 - 65

Automated Tools

l are often graphically-oriented

l may provide consistency checking

l support the development of the data dictionary

l usually support the development of DoD-STD-
2167A documentation

